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INTRODUCTION

Literature discussing the characterization of the real zeros of transcen-
dental functions is conspicuously absent (ref. 1). As a result, scientists and
engineers who wish to determine the zeros of such functions are at a severe
disadvantage unless they have some prior knowledge concerning the location of
the zeros. All the iterative schemes available require at least one estimate
in order to initiate the algorithm. If the estimate is not sufficiently close
to a real zero, or if no real zero exists, the iteration may diverge or lead
to the "wrong'" zero (ref. 2).

This recurrent problem is the motivation for this paper, which charac-
terizes the real zeros of the transcendental function y = ax + bet¥ (and
equivalent forms) where a, b, and c¢ are real numbers and e = 2,71828.

This transcendental function was chosen because it is the solution of many
first-order differential equations and sometimes appears in the numerical solu-
tion of nonlinear differential equations. Thus, this paper should facilitate
the solution of many everyday problems, as well as have heuristic value.

The following discussion addresses the above problem with respect to this
particular transcendental function by way of theorems. The theorems speak to
the questions of the existence, bounds, and number of real zeros., The answers
to these questions are particularly important in view of the value of computer
resources, since they remove the inefficiency involved in starting an iteration
from a poor initial estimate or in pursuing solutions that do not exist. It is
hoped that this discussion will afford insight into other types of transcen-
dental functions as well,

DISCUSSION

Proposition 1: The transcendental function y = ax + be®* has at most
two distinct real zeros.

Proof: Let X and x, be two zeros of y and let x; < x,. Then, by

Rolle's theorem, there exists a value Xy such that x; < xp < Xy, where

t

cx

y'(x¢) = a + cbe t =0 and y' denotes the derivative of y. Now suppose
that there are more than two zeros of y. They may be ordered so that

X; < Xy < X3, ..., X,. From Rolle's theorem, there exists x such that

t
x] < x¢ < xp, Xy < X < X3, and so on, where x, # x and y'(x), y'(xp = 0.
CX¢ CXm . .
Clearly, then, a + cbe = a + cbhe = 0, which implies that x_ = x .

t m



Theorem 1: Let y = ax + be® and let X, be a real zero for vy.
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Proof: Let c¢ > 0 and Xq > 0. Then Xg = -5e and x5 = -5-e .
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Consider now the case in which ¢ > 0 and Xq < 0 such that X, < 0.
-cX
Then we may write -axg + be = 0 where in this form Xy > 0 and ¢ > 0.

~-cx ~cX
Thus x, = 2e where 550 and |x.| = IEJ 0 lh
a a 0 a

. Further,

—cX b1 ~%o a -cx,
e implies that |XOI = lzwe and that ngllxol = 2e .
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Clearly, e > 2e and
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Zr%llXOI + ICXOI > 1n 2. Simplifying, ,xol
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Now let ¢ < 0 and X, > 0. Then we may write ax + be = 0 where
~CcX b
X, >0 and ¢ > 0 in this form. Thus, X =~ z° where —5-> 0 and

= '21 1 < Ibw. For the same reasons as in the case where x., < 0
al ex¢ a 0
e
and c > 0, it follows that |[x,| > 15 n2
2]+ lel

In the final case, ¢ < 0, and X < 0. Again, we may write

€Xg b %o
-ax, + be = 0 where X >0 and ¢ > 0 in this form. Thus, Xg =3



where §-> 0. As in the case where ¢ > 0 and Xq > 0, it follows that
2a|
2 In |—
'kl < |x,| < ——1bel
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Theorem 2: 1f the function y = ax + be® has two real zeros, both

1

zeros have the sign of c¢. Further, where |x2| > lel, Ew < lxll <-T—T
c
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Proof: Let ¢ > 0 and let X and x be two zeros where x, < X,.

1
and TET < lx2| <

CXy CcxX 2 1 2
Then ax, + be = 0 and ax; + be = 0, TFrom Rolle's theorem, there exist
cX
x, such that x; < x_<x, and y'(xt) = 0; that is, a + bce t - 0, or
CX, cX, cxt> CX,
a = -bce . Substituting in ax, + be = 0 yields —cbhe X, + be = 0,
ec(xz-xt) ec(xl—xt)
or X, =" which implies that X, > 0, Similarly, Xy = T
and X > 0. Thus, X, and x have the sign of ¢, and hence cxy >0
and cx, > 0. From the expressions for Xy and X, and the fact that
1 1
< i — —
X} < x. < X%y, it follows that |x1| < Ic] and that |x2| > o] From
b 1 1 2 1n 32|
theorem 1, it follows that r—‘ < |x I < 5— and that ——— < lle < .
a el el el

Further, Xy < X, implies that [x2| > [xl

In the case where c¢ < 0, the same argument leads to the following
expressions:

c(xl—xt)
e
Xl— c
and
c(x,—x.)
X2— c

where X < X, < Xge We may rewrite the expressions as follows:

—c(xl—xt)
e

1 -c



and

—c(xy=X.)
_e 27%¢
X, s
ec(xt-xl) c(xt—xz)
where ¢ > 0. Thus, X, = > and X, = = . These expressions
indicate that X < 0 and X, < 0, implying that X, < 0. Thus,
c(xX+—%x1)
|x,| = [iw e e 1
1 c |Cl
and
1 c(xt—xz) 1
=l = |2 <
c el
From theorem 1,
2al
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and the conditions that x; < 0 and X, < 0 imply that ]x1| > |x2 .

Theorem 3: Let abc < 0. Then

y = ax + be®*

—ﬁ%—> e if and only if the function

has two distinct zeros.

Proof: Let y have two distinct zeros, Xx; and

one zero lies in the interval (

0, L

Xy Then, by theorem 2,

1

C). Also, [y(0)] [y(—c—

ﬂ < 0, because if

this were not the case, x,, a zero, would also be an extremum such that
y'(x,) = 0. But by Rolle's theorem there exists another point,
x_, such that x, < x_ <X and that y'(x ) = 0, which is impossible

1 t 2

Cc Cc

for this particular function. Hence [y(Oﬂ [y<l>} = b<§-+ be), which is less

than zero. That is, §%~+ e <0 or —ﬁ%-> e.
1 ]2 1n -bzal
Conversely, let B%—> e. Then O < IEW < ——aqﬁT—_E__
c
b(§-+ be

. Observe that

Ey(Oﬂ [y(%)] = b(%—+ be). But the sign of Cb2 is that of [y(Oﬂ [ykéil,



b(3 + be)
C a

That is, = —
b2 be

+ e < 0 by hypothesis. Thus, by the intermediate

. . . 1
value theorem, there exists at least one zero in the interval (O, E). In

addition,

BEPCEE)] - (2 4 vzefon 20 4 2]

But the sign of this product depends on the sign of (%—+ be>(%§) since

-2a 2a
== z2 <«
In b +'bc 0

be

equals 1 + -e- From this hypothesis, it follows that 1 +-%§e >0 and

But <§-+ be)(z§> has the same sign as (§-+ be>E3 which
c c c a

~2a
V]| (21 e
that yl= l{y\——— < 0. Thus, by the intermediate value theorem, there
c c

is a zero in the interval <%3 bc>. By proposition 1, there are exactly

c
two.

Theorem 4: Let abc < 0, Then %%—= e 1if and only if there is exactly
cx

one zero for y = ax + be 7.

Proof: Let %% = e, Then observe that y(%) = %-+ be. But the expres-
sion be = %?— implies that y(%) = 0. That is, %— is a zero for vy, and

from theorem 3 it is the only zero.

Conversely, let x; be the only zero for y. Then axgy + beCXO =0

c
and c¢xg = -%fe XO. But this says that cxg > 0, and from theorem 1,
2 1n %%? 2 1In %é?
,x | < . That is, x, belongs to the interval 0, —— /.
0 0 c

2 1n -2a
But Ey(Oﬂ y(———E~EE— = Z%E{}n -2a + 22] > 0. Thus, this implies that xg

1n =2

C. Upon

cx
is an extremum, and hence y'(xO) = a + be 0 -0 and xg = =

substitution, we have



_____bc + be be = -?— 1n i + b(-_—é>
c c be be
a -a
- c(ln be 1)
=0
This implies that 1n %%—= 1, which implies that %%—= e.

Theorem §5: Let abc < 0. Then —ﬁ%—< e if and only if there are no
zeros for y = ax + be¥,

Proof: The proof of this theorem follows immediately from theorems 3
and 4.

Theorem 6: abc > 0 if and only if y = ax + be® has exactly one zero,
Xp, such that cxj < 0.

Proof: Let y have exactly one zero such that c¢xg < 0. Then

-} CX - CcX
= ——be 0 _bc.e 0

X - or ¢xg = — . But cxg < 0 dimplies that abc > 0.

Conversely, let abc > 0. Then i{?(x)] = cx + %fecx, which is zero if

and only if y(x) = 0. If v = cx, then g(v) =v + %fev. Since it is given

that %§ > 0, any value of v that would satisfy g(v) = 0 must be less than

zero. That is, Vo = X < 0 4if such a v exists. If Vo is a zero for g,
bec

then, from theorem 1, IVOI < From theorem 2, there is at most one zero.

Observe that

][] -5 25

<0

Thus, by the intermediate value theorem, there exists a zero for g(v) and
hence for y(x).



EXAMPLES

The theorems above address all transcendental functions which can be
expressed in the form y = ax + be®®X, The following examples should clarify
the application of these theorems.

Example 1: Find the intervals of the zeros of y = -6x + 3eZ¥,

Solution: From theorem 5, this function has no zero.

Example 2: Find the intervals of the zeros of y = -4x + e*.

Solution: From theorem 3, y has two zeros. If y has two zeros, then
from theorem 2 they must be positive. Also from theorem 2, the first zero lies
in the interval (%3 1) and the second lies in the interval (1, 4.16).

Example 3: Find the interval containing the zeros for y = 4x - Ze_zx.

Solution: 'y has a single zero (from theorem 6), and its sign is positive.

1 1n 2), which equals (l 0.12).

From theorem 1, the zero is in the interval <§3 5 ok

ALTERNATE FORMS

Example 4: Show that the zeros of y = aeft + preSt (where r, t,
and s are arbitrary real numbers) are the zeros of a function g = bt + aedt,
. . rty Sto o
Solution: 1If y has a zero ty, we can write ae = —btoe . Dividing
st0 (r—s)tO dtO
both sides by e , ae = —btO or ae + bty = 0. That is, tg 1is

de + bt and hence of y.

a zero of g = ae
Example &: Show that by a suitable transformation, the function

(4 ,
y = ax + be + d can be reduced to a function g = tu + re' and that thus

the zeros of g lead directly to those of vy.

Solution: Set u = cx +-%? so that

ax + beC +d = al— Y

x <u d) . b;(%‘%)

which equals g(u), or



or

cd
u— ——

— 4+ be

g(u)

tu + reu

a
where r = be and t = =

Let uy be a zero for g; then, by using the above theorems on 2,
we can locate ug. Thus, if up 1s a zero, then

e
a<—9-— g) +be '° #tra=0

c

u u
0 g. 0 43. Thus, by the inverse trans-

and = - is a zero for y. But x, = — =

formation, one can find Xy directly from ug.

Example 6: Show that the function y = ax + b ln (cx +d) + p (where p
is an arbitrary real number) can be reduced to a function g(x) = cx + keS% 4+ d

b
(where k = -e b and s = -%) whose zeros are those of vy.

Solution: Let Xy be a zero for y. Then

ax, + b 1n (cxO +d) +p =20

or
-ax, = P
5 = In (cxg + d)
or
—aXO—p
e b = cxg + d
and

Hence,



or
SXO
cxg + ke +d=20
Thus, a zero for g is one for vy.
Dryden Flight Research Center

National Aeronautics and Space Administration
Edwards, Calif., October 25, 1978
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